

Tetrahedron: Asymmetry 9 (1998) 141-149

TETRAHEDRON: ASYMMETRY

Synthesis of 2-C-(4-aminocarbonyl-2-thiazoyl)-1,4-anhydro-Lxylitols and their fluoro derivatives

H. Y. Zhang, H. W. Yu, L. T. Ma, J. M. Min and L. H. Zhang *

The National Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Beijing Medical University, Beijing 100083, PR China

Received 4 November 1997; accepted 25 November 1997

Abstract

3,5-O-Benzylidene-2-C-cyano-1,4-anhydro-L-xylitol 7 was synthesized stereoselectively from D-xylose in 7 steps. 2-C-(4-Aminocarbonyl-2-thiazoyl)-1,4-anhydro-L-xylitols and their fluoro derivatives were synthesized from the cyanohydrin 7. Fluorination of compound 9 proceeded with retention of configuration using diethylaminosulfur trifluoride (DAST). © 1998 Elsevier Science Ltd. All rights reserved.

1. Introduction

Considerable effort has been directed to the search for novel nucleoside analogues for use as antiviral and antitumor agents. The biological activity of the naturally occurring C-nucleosides has stimulated the research of this field in the last two decades. Among them, tiazofurin and its selenium analogue, selenazofurin.² with distinguished antitumor and antiviral activity, have gained significant attention.

HO
$$X = S$$
, tiazofurin $X = Se$, selenazofurin

Structural modifications of the ribofuranosyl moiety of tiazofurin have been reported including preparation of 5'-, 3'-, or 2'-substituted derivatives, 1,3,4 arabino- and xylofuranosyl, 5.6 acyclic, 7 pyranosyl, 8 carbocyclic⁹ analogues. However, these substances were devoid of any significant biological activity.

Recently, a number of nucleosides with the unnatural L-configuration have been reported as potent chemotherapeutic agents against HIV, HBV and certain forms of cancer. It is interesting that these L-nucleosides have potent biological activities, while some of them show lower toxicity

P11: S0957-4166(97)00615-0

^{*} Corresponding author. E-mail; zdszlh@mail.bjmu.edu.cn

profiles than their D-counterparts.¹⁰ We have reported the synthesis of 4'-(R)-hydroxyl-5'-(S)-hydroxymethyl-tetrahydrofuranyl purines and pyridines from D-xylose¹¹ and some derivatives of 4-deoxy-4-nucleobase-2,5-anhydro-L-mannitol from D-glucose.¹² In this paper, we report the synthesis of 2-C-(4-aminocarbonyl-2-thiazoyl)-1,4-anhydro-L-xylitols and their fluoro derivatives.

2. Results and discussion

1,2-O-Isopropylidene-α-D-xylose 1 was prepared from D-xylose according to the method of Morav-cova et al. ¹³ Tosylation of 1 was completed by the reaction of 1 with toluenesulfonyl chloride in pyridine at 0°C to give compound 2. ¹⁴ After treatment of 2 with 1% trifluoroacetic acid in methanol at 80°C, followed by reaction with sodium borohydride, 1,4-anhydro-L-xylitol 4 was obtained and the protection of 4 was completed in the presence of benzaldehyde and anhydrous zinc chloride in 34.7% yield in one pot. ^{11,12,14,15} The 2-OH in 5 was oxidized by using chromium trioxide/pyridine/acetic anhydride in dichloromethane to give ketone 6. The key intermediate, cyanohydrin 7, was formed from a stereoselective addition of potassium cyanide to 6 in ethyl acetate at room temperature. The cyano group was introduced from the upper side on C-2 in 66.5% yield (Scheme 1). If the 2-hydroxy group is 'up' on the ring, the cyanohydrin obtained may be less stable than 7 due to the stereoelectronic effect between the neighboring oxygen atoms. The stereochemistry at C-2 of cyanohydrin 7 was determined by a single crystal X-ray analysis (Fig. 1). It was shown that the cyano group on the cyanohydrin 7 was at the same side of 3,5-O-benzylidene group.

(i) TsCl, Py., r.t.; (ii)1% TFA, MeOH, 80°C; (iii) 0.3% TFA, H₂O, 80°C; NaBH₄, H₂O, r.t.; (iv) PhCHO, ZnCl₂, r.t.; (v) CrO₃, Py., Ac₂O, CH₂Cl₂, r.t.; (vi)KCN, EtOAc-H₂O, r.t.

Scheme 1.

Compound 8 was obtained by the reaction of 7 and hydrogen sulphide in the presence of a catalytic amount of 4-methylaminopyridine. The thiazole 9 was synthesized by the reaction of thioamide 8 and ethyl bromopyruvate in acetonitrile at room temperature in 73.5% yield (Scheme 2).

Ammonolysis of this ester afforded the amide 10 and 11 and deblocking of the benzylidene group was completed using 0.5% aqueous trifluoroacetic acid solution at 75°C to give compounds 12 and 13 in approximately quantitative yields (Scheme 3). The fluorinated analogue 14 was obtained by fluorination of 9 with diethylaminosulfur trifluoride (DAST) in dichloromethane at room temperature in very good yield. Usually, it was assumed that DAST fluorination of the hydroxyl group would proceed with inversion of configuration. However, Jeong et al. 17 reported that fluorination of hydroxyl groups at C2′ and C3′ of the 4′-thioribofuranosyl ring with DAST proceeded with exclusive retention of configuration

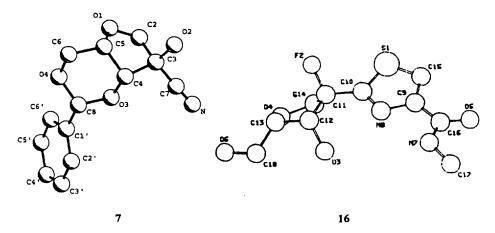


Fig. 1. Crystal X-ray structures of compounds 7 and 16

(viii) H2S, DMAP, EtOH-dioxane, r.t.; (ix) BrCH2COCO2Et, CH3CN, r.t.

Scheme 2.

due to the participation of the 4'-thiofuranose sulfur via a double inversion mechanism. The structure of 16 was determined by a single crystal X-ray analysis (Fig. 1). The X-ray derived structure of 16 shows that fluorine was 'down' on the sugar ring. It appears, therefore, a double inversion mechanism during the DAST reaction of compound 9 is responsible for the retention of the configuration.

(x) NH₃-H₂O or CH₃NH₂, EtOH, r.t.; (xi) DAST, CH₂Cl₂, r.t.; (xii) 0.5%TFA, 75°C

Scheme 3.

3. Conclusion

Novel nucleosides 12, 13, 15 and 16 were synthesized stereoselectively by construction of a thiazole moiety from cyanohydrin 7. The fluorination of compound 9 with DAST proceeded with the retention of the configuration.

4. Experimental section

4.1. General procedures

Melting points were determined on a Kofler melting point apparatus and were uncorrected. Optical rotations were determined with a Perkin–Elmer 243B polarimeter. IR spectra were recorded on a DE-983G spectrophotometer in KBr pellets. UV spectra were recorded on a Pharmacia LKB Biochrom 4060 spectrophotometer. Mass spectra were obtained on either ZAB-HS or KYKY-ZHP-5 mass spectrometers. NMR spectra were recorded on Varian-300, Varian-500 or Brucker DPX-400 spectrometers with TMS as an internal standard. Exchangeable protons were detected by addition of D₂O. Column chromatography was performed on silica gel (200–300 mesh) and silica gel GF₂₅₄ was used for TLC purchased from the Qingdao Chemical Company, China.

4.2. 3,5-O-Benzylidene-1,4-anhydro-L-xylitol 5

Toluenesulfonyl chloride (50 g, 0.26 mol) was added to a stirred solution of 1 (46.0 g, 0.24 mol) in pyridine (300 ml) at 0°C. The mixture was stirred at room temperature for 2 h. Some of the solvent was evaporated and the residue was stirred with saturated NaHCO₃ (100 ml) for 30 min. The mixture was extracted with CHCl₃, washed with 1 M H₂SO₄ and H₂O, then dried over anhydrous Na₂SO₄ to yield a yellow-white solid. The crude solid was allowed to react in 1% trifluoroacetic acid in methanol (600 ml) at 80°C for 24 h, followed by neutralization with solid NaHCO₃. The solvents were evaporated and the residue was extracted with acetone (300 ml). After the acetone solution was concentrated, a paleyellow syrup, in which compound 3 was contained, was dissolved in water (300 ml) containing 0.3% trifluoroacetic acid. The solution was heated at 80°C for 6 h, then cooled to 0°C. After neutralization, the mixture was treated with NaBH₄ (13.0 g) at room temperature for 1.5 h, then cooled to 0°C and neutralized again. The residue was evaporated and the mixture was applied to a silica gel column and eluted with ethanol. The combined eluant was concentrated and evaporated with toluene (50 ml×2). Freshly dried zinc chloride (30 g) and 100 ml (0.98 mol) of benzaldehyde were added to the resulting syrup and the suspension was stirred vigorously for 2 days at room temperature. The mixture was poured into cold water and extracted with CHCl3. The combined organic layer was dried with anhydrous Na₂SO₄. After filtration and removal of the solvent, the desired product 5 (10.2 g) was obtained as white needles. An additional compound 5 (8.3 g) was obtained from the mother liquid. The total yield was 34.7% from 1. $[\alpha]_{D}^{22}$ +3.3 (c 0.060, MeOH). ¹H NMR (CDCl₃) δ ppm: 7.46 (2H, m, arom H), 7.36 (3H, m, arom H), 5.44 (1H, s, PhCH<), 4.43 (1H, d, $J_{5a,5b}$ =13.3 Hz, H_{5a}), 4.39 (1H, d, $J_{1a,1b}$ =11.1 Hz, H_{1a}), 4.38 (1H, d, $J_{3,4}$ =6.0 Hz, H_3), 4.31 (1H, d, $J_{2,1b}$ =2.4 Hz, H_2), 4.12 (1H, dd, $J_{5b,5a}$ =13.3 Hz, $J_{5b,4}$ =1.8 Hz, H_{5b}), 3.99 (1H, m, H_4), 3.82 (1H, dd, $J_{1b,1a}$ =11.1 Hz, $J_{1b,2}$ =2.4 Hz, H_{1b}). Calcd for $C_{12}H_{14}O_4$ (222.26): C, 64.84; H, 6.36. Found: C, 64.45; H, 6.35.

4.3. 3,5-O-Benzylidene-2-keto-1,4-anhydro-L-xylitol 6

To a stirred suspension of CrO₃ (27 g, 0.27 mol) in CH₂Cl₂ (200 ml) under an ice—water external bath were carefully added pyridine (44 ml, 0.54 mol), a solution of 5 (20 g, 0.090 mol) in CH₂Cl₂ (200 ml) and Ac₂O (25.5 ml, 0.27 mol). The mixture was stirred at room temperature for 3 h, then poured into ethyl acetate (400 ml) and stirred for more than 30 min. After filtration through a short silica gel column eluted with EtOAc, the combined eluant was concentrated and neutralized with concentrated NaOH aqueous solution. The mixture was extracted with CHCl₃, washed with 1 M H₂SO₄ and H₂O, dried with anhydrous Na₂SO₄ and evaporated to yield a brown solid which was recrystallized from ethanol to give 6 as a white solid (9.7 g, 49.0%). [α]_D²² -32.4 (c 0.074, MeOH). ¹H NMR (CDCl₃) δ ppm: 7.48 (2H, m, arom H), 7.36 (3H, m, arom H), 5.55 (1H, s, PhCH<), 4.49 (1H, d, J_{5a,5b}=12.6 Hz, H_{5a}), 4.48 (1H, d, J_{1a,1b}=18.0 Hz, H_{1a}), 4.29 (1H, d, J_{5b,5a}=12.6 Hz, J_{5b,4}=2.4 Hz, H_{5b}), 4.28 (1H, d, J_{3,4}=2.4 Hz, H₃), 4.01 (1H, d, J_{1b,1a}=18.0 Hz, H_{1b}), 4.00 (1H, m, H₄). ¹³C NMR (CDCl₃) δ ppm: 206.4 (C₂), 135.3, 127.7, 126.7 (×2), 124.5 (×2) (arom C), 97.9 (PhCH<), 72.2 (C₃), 71.1 (C₄), 69.4 (C₁), 65.4 (C₅). Calcd for C₁₂H₁₂O₄ (220.24): C, 65.43; H, 5.50. Found: C, 65.43; H, 5.39.

4.4. 3,5-O-Benzylidene-2-C-cyano-1,4-anhydro-L-xylitol 7

A mixture of **6** (8.7 g, 0.040 mmol), ethyl acetate (200 ml), water (100 ml), sodium hydrogen carbonate (7.0 g) and potassium cyanide (3.0 g, 0.046 mmol) was stirred vigorously at room temperature overnight. The organic phase was separated and dried over anhydrous Na₂SO₄. After evaporation, the residue was purified by silica gel chromatography and recrystallized from EtOH to give **7** as white crystals (6.5 g, 66.5%). m.p. >355°C. [α]_D²² -86.4 (c 0.044, MeOH). IR ν_{max}^{KBr} (cm⁻¹): 2245. EI-MS (m/z): 247[M⁺]. ¹H NMR (DMSO-d₆) δ ppm: 7.42 (5H, m, arom H), 7.33 (1H, s, exchangeable, 2-O*H*), 5.66 (1H, s, PhC*H*<), 4.53 (1H, d, J_{3,4}=2.4 Hz, H₃), 4.26 (1H, d, J_{1a,1b}=9.2 Hz, H_{1a}), 4.20 (1H, d, J_{5a,5b}=13.0 Hz, H_{5a}), 4.15 (1H, d, J_{5b,5a}=13.0 Hz, J_{5b,4}=1.6 Hz, H_{5b}), 4.02 (1H, d, J_{4,5b}=1.6 Hz, H₄), 3.98 (1H, d, J_{1b,1a}=9.2 Hz, H_{1b}). ¹³C NMR (CDCl₃) δ ppm: 137.7, 128.9, 128.1 (×2), 126.0 (×2) (arom C), 118.0 (*C*N), 97.7 (Ph*C*H<), 79.9 (C₂), 76.5 (C₃), 75.0 (C₁), 72.5 (C₄), 66.5 (C₅). Calcd for C₁₃H₁₃O₄N (247.27): C, 63.14; H, 5.31; N, 5.67. Found: C, 63.17; H, 5.19; N, 5.65. Crystal data: empirical formula, C₁₃H₁₃O₄N; formula weight, 247.25; crystal system, orthorhombic; space group, P2₁2₁2₁; *a*=5.641(2), *b*=12.652(4), *c*=17.045(5) Å, *V*=1216.5(7) Å³, *Z*=4, D_x =1.350 g/cm³.

4.5. 3.5-O-Benzylidene-2-C-aminothiocarbonyl-1,4-anhydro-L-xylitol 8

Hydrogen sulphide was introduced into the vigorously stirred reaction mixture of compound **7** (7.6 g, 0.031 mmol) and 4-dimethylaminopyridine (1.4 g) in ethanol (80 ml) and dioxane (80 ml) at room temperature for 20 h. The reaction mixture was sealed and stirred for over 10 h. The solvent was evaporated and the residue was purified by silica gel chromatography (2–20% ethyl acetate–petroleum ether) to yield compound **8** as a white solid (3.5 g, 40.5%). [α]_D²² –214.7 (c 0.034, MeOH). UV $\lambda_{\text{max}}^{\text{MeOH}}$ (log ε): 207.6 (4.03), 268.9 (4.08). EI–MS (m/z): 281[M⁺]. ¹H NMR (DMSO-d₆) δ ppm: 9.83, 9.10 (each 1H, s, NH₂), 7.38 (5H, m, arom H), 6.10 (1H, s, 2-OH), 5.48 (1H, s, PhCH<), 4.73 (1H, d, J_{1a,1b}=9.2 Hz, H_{1a}), 4.35 (1H, d, J_{5a,5b}=12.0 Hz, H_{5a}), 4.19 (1H, s, H₃), 4.10 (1H, d, J_{5b,5a}=12.0 Hz, H_{5b}), 4.08 (1H, s, H₄), 3.80 (1H, d, J_{1b,1a}=9.2 Hz, H_{1b}). Calcd for C₁₃H₁₅O₄NS (281.35): C, 55.49; H, 5.38; N, 4.98. Found: C, 55.42; H, 5.37; N, 4.67.

4.6. 3,5-O-Benzylidene-2-C-(4-ethoxycarbonyl-2-thiazoyl)-1,4-anhydro-L-xylitol 9

Compound **8** (3.0 g, 0.011 mol) in anhydrous acetonitrile (150 ml) was reacted with ethyl bromopyruvate (5.3 ml, 0.042 mmol) for 48 h. The reaction mixture was concentrated and stirred with saturated NaHCO₃ solution (50 ml) for 20 min and then extracted with diethyl ether and dried. On removal of the solvent, a brown syrup was obtained. After silica gel column chromatography (CHCl₃:CH₃OH, 200:1) and recrystallization from ethanol, compound **9** was obtained as a white solid (2.96 g, 73.5%). $[\alpha]_0^{22}$ –176.5 (c 0.034, MeOH). UV λ_{max}^{MeOH} (log ϵ): 205.1 (4.43), 233.6 (4.05). EI-MS (m/z): 377[M⁺]. H. NMR (DMSO-d₆) δ ppm: 8.55 (1H, s, H₅'), 7.32 (5H, m, arom H), 6.92 (1H, s, 2-OH), 5.57 (1H, s, PhCH<), 4.69 (1H, d, J_{1a,1b}=9.5 Hz, H_{1a}), 4.40 (1H, d, J_{3,4}=2.0 Hz, H₃), 4.31 (2H, q, J=7.5 Hz, -OCH₂CH₃), 4.23 (1H, overlapped, H₄), 4.21 (1H, d, J_{5a,5b}=12.0 Hz, H_{5a}), 4.17 (1H, dd, J_{5b,5a}=12.0 Hz, J_{5b,4}=1.5 Hz, H_{5b}), 4.07 (1H, d, J_{1b,1a}=9.5 Hz, H_{1b}), 1.30 (3H, t, J=7.5 Hz, -OCH₂CH₃). H. Collaboration (C2'), 160.8 (-COOEt), 145.4 (C4'), 130.3 (C5'), 138.1, 128.6, 127.9 (×2), 126.1 (×2) (arom C), 97.4 (PhCH<), 82.8 (C₂), 81.2 (C₃), 76.3 (C₁), 73.2 (C₄), 67.1 (-OCH₂CH₃), 60.7 (C₅), 14.2 (-OCH₂CH₃). Calcd for C₁₈H₁₉O₆NS (377.44): C, 57.24; H, 5.08; N, 3.71. Found: C, 57.11; H, 4.93; N, 3.64.

4.7. 3,5-O-Benzylidene-2-C-(4-aminocarbonyl-2-thiazoyl)-1,4-anhydro-L-xylitol 10

The solution of ester **9** (0.20 g, 0.53 mmol) in ethanol (4 ml) was allowed to react with 25% ammonia solution (4 ml) at room temperature until consumption of the starting material. The crude product was purified by silica gel column chromatography (petroleum ether:ethyl acetate 1:3) and recrystallization from ethanol yielded amide **10** (150 mg, 81.2%). [α]_D²² -147.8 (c 0.046, MeOH). UV λ _{max}^{MeOH} (log ϵ): 206.0 (4.30), 234.7 (3.84). PFAB-MS (m/z): 349 [M+1]⁺. ¹H NMR (DMSO-d₆) δ ppm: 8.26 (1H, s, H₅'), 7.66, 7.62 (each 1H, NH₂), 7.32 (5H, m, arom H), 6.84 (1H, s, 2-OH), 5.54 (1H, s, PhCH<), 4.84 (1H, d, J_{1a,1b}=9.0 Hz, H_{1a}), 4.34 (1H, d, J_{3,4}=2.0 Hz, H₃), 4.22 (1H, s, H₄), 4.21 (1H, d, J_{5a,5b}=12.0 Hz, H_{5a}), 4.16 (1H, d, J_{5b,5a}=12.0 Hz, H_{5b}), 4.03 (1H, d, J_{1b,1a}=9.0 Hz, H_{1b}). Calcd for C₁₆H₁₆O₅N₂S (348.40): C, 55.15; H, 4.64; N, 8.04. Found: C, 54.93; H, 5.10; N, 7.83.

4.8. 3,5-O-Benzylidene-2-C-(4-methylaminocarbonyl-2-thiazoyl)-1,4-anhydro-L-xylitol 11

Compound **11** (160 mg, 83.3%) was obtained by the same procedure as **10**, except using methylamine instead of ammonia. [α]_D²² -128.8 (c 0.052, MeOH). UV λ_{max}^{MeOH} (log ϵ): 205.7 (3.35), 232.7 (3.01). PFAB-MS (m/z): 363 [M+1]⁺. ¹H NMR (DMSO-d₆) δ ppm: 8.28 (1H, q, J=5.0 Hz, -NHCH₃), 8.23 (1H, s, H₅'), 7.31 (5H, m, arom H), 6.84 (1H, s, 2-OH), 5.54 (1H, s, PhCH<), 4.88 (1H, d, J_{1a,1b}=9.5 Hz, H_{1a}), 4.34 (1H, d, J_{3,4}=2.0 Hz, H₃), 4.22 (1H, s, H₄), 4.21 (1H, d, J_{5a,5b}=11.0 Hz, H_{5a}), 4.16 (1H, d, J_{5b,5a}=11.0 Hz, H_{5b}), 4.04 (1H, d, J_{1b,1a}=9.5 Hz, H_{1b}), 2.81 (3H, d, J=5.0 Hz, -NHCH₃). Calcd for C₁₇H₁₈O₅N₂S (362.43): C, 56.33; H, 5.02; N, 7.73. Found: C, 56.62; H, 4.91; N, 7.64.

4.9. 2-C-(4-Aminocarbonyl-2-thiazoyl)-1,4-anhydro-L-xylitol 12

Compound 10 (0.10 g, 0.29 mmol) was heated in 10 ml of 0.5% aqueous trifluoroacetic acid at 75°C to remove the benzylidene group to yield compound 12 (93.8%), $[\alpha]_D^{22}$ –52.8 (c 0.036, MeOH). UV λ_{max}^{MeOH} (log ϵ): 204.5 (4.15), 231.2 (3.79). PFAB-MS (m/z): 261 [M+1]⁺. ¹H NMR (DMSO-d₆) δ ppm: 8.24 (1H, s, H₅'), 7.72, 7.56 (each 1H, -NH₂), 6.53 (1H, s, 2-OH), 5.16 (1H, d, J_{3-OH, H3}=6.0 Hz, 3-OH), 4.58 (1H, t, J_{5-OH, H5}=5.5 Hz, 5-OH), 4.49 (1H, d, J_{1a,1b}=9.0 Hz, H_{1a}), 4.22 (1H, m, J_{4.5}=5.5 Hz,

 $\begin{array}{l} J_{4,3}{=}3.0~Hz,~H_4),~3.92~(1H,~dd,~J_{H3,3-OH}{=}6.0~Hz,~J_{3,4}{=}3.0~Hz,~H_3),~3.83~(1H,~d,~J_{1a,1b}{=}9.0~Hz,~H_{1b}),~3.64~(1H,~m,~J_{5a,5-OH}{=}5.5~Hz,~J_{5a,4}{=}5.5~Hz,~J_{5a,5b}{=}10.5~Hz,~H_{5a}),~3.52~(1H,~m,~J_{5b,5-OH}{=}5.5~Hz,~J_{5b,4}{=}5.5~Hz,~J_{5b,5a}{=}10.5~Hz,~H_{5b}). \end{array}$

4.10. 2-C-(4-Methylaminocarbonyl-2-thiazoyl)-1,4-anhydro-L-xylitol 13

After removal of the benzylidene group as above, compound 11 (0.10 g, 0.28 mmol) was converted to yield 13 (95.1%), $[\alpha]_D^{22}$ –36.8 (c 0.068, MeOH). UV λ_{max}^{MeOH} (log ϵ): 203.5 (4.04), 233.4 (3.81). PFABMS (m/z): 275 [M+1]⁺. ¹H NMR (DMSO-d₆) δ ppm: 8.29 (1H, q, J=5.0 Hz, -NHCH₃), 8.20 (1H, s, H₅'), 6.54 (1H, s, 2-OH), 5.12 (1H, d, J_{3-OH, H3}=5.5 Hz, 3-OH), 4.57 (1H, t, J_{5-OH, H5}=5.5 Hz, 5-OH), 4.50 (1H, d, J_{1a,1b}=9.0 Hz, H_{1a}), 4.20 (1H, m, H₄), 3.91 (1H, dd, J_{H3,3-OH}=5.5 Hz, J_{3,4}=3.5 Hz, H₃), 3.82 (1H, d, J_{1a,1b}=9.0 Hz, H_{1b}), 3.63 (1H, m, H_{5a}), 3.50 (1H, m, H_{5b}), 2.77 (3H, d, J=5.0 Hz, -NHCH₃). Calcd for C₁₀H₁₄O₅N₂S (274.32): C, 43.78; H, 5.15; N, 10.21. Found: C, 43.37; H, 5.26; N, 9.98.

4.11. 3,5-O-Benzylidene-2-C-(4-ethoxycarbonyl-2-thiazoyl)-2-deoxy-2-fluoro-1,4-anhydro-L-xylitol 14

A solution of **9** (0.40 mg, 1.1 mmol) in anhydrous CH₂Cl₂ (20 ml) was treated with diethylaminosulfur trifluoride for 6 h at room temperature. The mixture was evaporated and purified by column chromatography to yield compound **14** (0.39 g, 97.0%). [α]₃³⁴ -78.8 (c 0.035, MeOH). UV λ_{max}^{MeOH} (log ϵ): 207.0 (4.63), 236.0 (3.91). PFAB-MS (m/z): 380 [M+1]⁺. ¹H NMR (DMSO-d₆) δ ppm: 8.71 (1H, s, H₅'), 7.32 (5H, m, arom H), 5.67 (1H, s, PhCH<), 4.94 (1H, dd, J_{3,4}=2.5 Hz, J_{3,F}=8.0 Hz, H₃), 4.74 (1H, dd, J_{1a,1b}=11.0 Hz, J_{1a,F}=41.0 Hz, H_{1a}), 4.44 (1H, dd, J_{1b,1a}=11.0 Hz, J_{1b,F}=26.0 Hz, H_{1b}), 4.32 (2H, q, J=7.5 Hz, -OCH₂CH₃), 4.29 (1H, d, J_{5a,5b}=12.5 Hz, H_{5a}), 4.26 (1H, overlapped, H₄), 4.24 (1H, dd, J_{5b,5a}=12.5 Hz, J_{5b,4}=1.5 Hz, H_{5b}), 1.30 (3H, t, J=7.5 Hz, -OCH₂CH₃). ¹³C NMR (DMSO-d₆) δ ppm: 162.1 (d, J=24.9 Hz, C₂'), 160.4 (-COOEt), 146.0 (C₄'), 131.7 (C₅'), 137.6, 128.9, 128.0 (×2), 126.0 (×2) (arom C), 102.2 (d, J=177.1 Hz, C₂), 97.8 (PhCH<), 78.7 (d, J=34.5 Hz, C₃), 74.1 (d, J=22.0 Hz, C₁), 73.3 (C₄), 66.6 (-OCH₂CH₃), 61.0 (C₅), 14.2 (-OCH₂CH₃). ¹⁹F NMR (DMSO-d₆, CF₃COOH as an external strandard) δ ppm: -12.58 (dddd, J_{1a,F}=41.0 Hz, J_{1b,F}=26.0 Hz, J_{3,F}=8.0 Hz, J_{4,F}=3.8 Hz). Calcd for C₁₈H₁₈O₅NSF (379.43): C, 56.97; H, 4.79; N, 3.69. Found: C, 56.69; H, 4.71; N, 3.35.

4.12. 2-C-(4-Aminocarbonyl-2-thiazoyl)-2-deoxy-2-fluoro-1,4-anhydro-L-xylitol 15

After ammonolysis and removal of the benzylidene group as above, compound 14 (90 mg, 0.24 mmol) was converted to yield 15 (50 mg, 80.4%). $[\alpha]_{D}^{34}$ –8.3 (c 0.040, MeOH). UV λ_{max}^{MeOH} (log ϵ): 203.4 (4.37), 232.3 (3.93, sh). PFAB-MS (m/z): 263 [M+1]⁺. ¹H NMR (DMSO-d₆) δ ppm: 8.42 (1H, s, H₅'), 7.80, 7.65 (each 1H, s, -NH₂), 5.78 (1H, d, J_{3-OH, H3}=6.0 Hz, 3-OH), 4.73 (1H, t, J_{5-OH, H5}=6.0 Hz, 5-OH), 4.64 (1H, d, J_{1a,1b}=11.5 Hz, J_{1a,F}=42.0 Hz, H_{1a}), 4.30 (1H, m, J_{H3,3-OH}=6.0 Hz, J_{3,4}=3.5 Hz, J_{3,F}=9.5 Hz, H₄), 4.18 (1H, dd, J_{1b,1a}=11.5 Hz, J_{1b, F}=26.0 Hz, H_{1b}), 4.17 (1H, overlapped, H₄), 3.68 (1H, m, J_{5a,5b}=11.5 Hz, J_{5a,5-OH}=6.0 Hz, J_{5b,4}=5.5 Hz, H_{5b}). ¹³C NMR (DMSO-d₆) δ ppm:163.3 (d, J=26.9 Hz, C₂'), 162.0 (-COONH₂), 149.9 (C₄'), 126.5 (C₅'), 103.8 (d, J=177.1 Hz, C₂), 82.9 (C₄), 75.5 (d, J=29.8 Hz, C₃), 72.4 (d, J=22.0 Hz, C₁), 59.1 (C₅). ¹⁹F NMR (DMSO-d₆, CF₃COOH as an external standard) δ ppm: -7.37 (dddd, J_{H1a,F}=42.0 Hz, J_{H1b,F}=26.0 Hz, J_{H3,F}=9.5 Hz, J_{H4,F}=4.7 Hz). Calcd for C₉H₁₁O₄N₂SF (262.28): C, 41.21; H, 4.24; N, 10.68. Found: C, 41.40; H, 4.37; N, 10.29.

4.13. 2-C-(4-Methylaminocarbonyl-2-thiazoyl)-2-deoxy-2-fluoro-1,4-anhydro-L-xylitol 16

Compound 14 (0.25 g, 0.66 mmol) was converted as above to yield 16 (0.15 g, 82.4%). m.p. $152-153^{\circ}$ C. [α]_D³⁴ -2.3 (c 0.068, MeOH). UV λ_{max}^{MeOH} (log ε): 206.1 (4.16), 231.3 (3.84). PFAB-MS (m/z): 277 [M+1]⁺. ¹H NMR (DMSO-d₆) δ ppm: 8.40 (1H, s, H₅·), 8.38 (1H, q, J = 5.0 Hz, $-NHCH_3$), 5.78 (1H, d, $J_{3-OH, H3}$ =6.0 Hz, 3-OH), 4.73 (1H, t, $J_{5-OH, H5}$ =6.0 Hz, 5-OH), 4.65 (1H, dd, $J_{1a,1b}$ =11.5 Hz, $J_{1a,F}$ =42.0 Hz, H_{1a}), 4.30 (1H, m, $J_{H3,3OH}$ =6.0 Hz, $J_{3,4}$ =3.5 Hz, $J_{3,F}$ =9.5 Hz, J_{3}),4.18 (1H, dd, $J_{1b,1a}$ =11.5 Hz, $J_{1b,F}$ =26.0 Hz, J_{1b} , 4.17 (1H, overlapped, H₄), 3.68 (1H, m, $J_{5a,5b}$ =11.0 Hz, $J_{5a,5-OH}$ =6.0 Hz, $J_{5a,4}$ =5.5 Hz, J_{5a} , 3.57 (1H, m, $J_{5b,5a}$ =11.0 Hz, $J_{5b,5-OH}$ =6.0 Hz, $J_{5b,4}$ =5.5 Hz, J_{5b} , 2.79 (3H, d, $J_{5a,4}$ =5.5 Hz, $J_{5a,5}$ =11.0 NMR (DMSO-d₆) δ ppm: 163.4 (d, $J_{5a,5}$ =26.8 Hz, $J_{5a,5}$ =11.0 Hz, $J_{5a,5}$ =11.0

Acknowledgements

This project was supported by the National Natural Science Foundation of China and we thank Mrs. Yang Lu, Mr. Wenjun Kang and Prof. Qitai Zheng (Chinese Academy of Medicine Science) and Mrs. Xiuyun Lin and Prof. Yicheng Dong (Institute of Biophysics, Chinese Academy of Sciences) for single-crystal X-ray analyses.

References

- 1. Srivastava, P. C.; Pickering, M. V.; Allen, L. B.; Streeter, D. G.; Campbell, M. T.; Witkowski, J. T.; Sidwell, R. W.; Robins, R. K. J. Med. Chem. 1977, 20, 256-262.
- 2. Sirvastava, P. C.; Robins, R. K. J. Med. Chem. 1983, 26, 445-448.
- 3. Baur, R. H.; Baker, D. C. Nucleosides & Nucleotides 1984, 3, 77.
- Jayaram, H. N.; Dion, R. L.; Glazer, R. I.; Johns, D. G.; Robins, R. K.; Srivastava, P. C.; Cooney, D. A. Biochem. Pharmacol. 1982, 31, 2371-2380.
- 5. Jiang, C.; Baur, R. H.; Dechter, J. J.; Baker, D. C. Nucleosides & Nucleotides 1984, 3, 123.
- 6. Mao, D. T.; Marquez, V. E. Tetrahedron Lett. 1984, 25, 2111-2114.
- 7. Kovacs, L.; Herczegh, P.; Batta, G.; Farkas, I. Heterocycles 1987, 26, 947-960.
- 8. Kovacs, L.; Herczegh, P.; Batta, G.; Farkas, I. Tetrahydron 1991, 47, 5539-5548.
- 9. Dishington, A. P.; Humber, D. C.; Stoodley, R. J. J. Chem. Soc., Perkin Trans 1 1993, 57-65.
- (a) Doong, S. L.; Tsai, C. H.; Schinazi, R. F.; Liotta, D. C.; Cheng, Y. C. Proc. Natl Acad. Sci. USA 1991, 88, 8495.
 (b) Lin, T. S.; Luo, M. Z.; Pai, S. B.; Dutschuman, G. E.; Cheng, Y. C. J. Med. Chem. 1994, 37, 798.
 (c) Grove, K. L.; Guo, X.; Liu, S. H.; Gao, Z.; Chu, C. K.; Ma, T. W.; Shanmuganathan, K.; Wang, C. G.; Xiang, Y.; Balakrishna Pai, S; Yao, G. Q.; Sommadossi, J. P.; Cheng, Y. C. Antimicrol Agents and Chemother. 1995, 39, 979.
 (d) Lin, T.-S.; Luo, M.-Z.; Liu, M.-C.; Zhu, Y.-L.; Dutschman, G. E.; Cheng, Y.-C. Nucleosides & Nucleotides 1995, 14, 1759-1783.
 (e) Ma, T. W.; Balakrishna Pai, S.; Zhu, Y. L.; Lin, J. S.; Shanmuganathan, K.; Du, J.; Wang, C. G.; Kim, H.; Newton, M. G.; Cheng Y. C.; Chu, C. K. J Med. Chem. 1996, 39, 2835.
- 11. Yu, H. W.; Zhang, L. R.; Zhuo, J. C.; Ma, L. T.; Zhang, L. H. Bioorg. & Med. Chem. 1996, 4, 609.
- 12. Yang, Z. J.; Yu, H. W.; Min, J. M.; Ma, L. T.; Zhang, L. H. Tetrahedron: Asymmetry 1997, 8, 2739-2747.
- 13. Moravcova, J.; Capkova, J.; Stanek, J. Carbohydr. Res. 1994, 61-66.
- 14. Defaye, J.; Horton, D.; Muesser, M. Carbohydr. Res. 1971, 20, 305.

- 15. Tam, S.; Holman, M.; Huryn, D.; Cislo, A. Nucleosides & Nucleotides 1991, 10, 245.
- 16. (a) Leory, J.; Herbert, E.; Wakselman, C. J. Org. Chem. 1979, 20, 1823. (b) Ma, L. T.; Sun, L. B.; Dong, L. J.; Zhang, L. H.; Cao, C. Y.; Qiao, L. J. Beijing Med. Univ. 1989, 21, 10. (c) Ma, L. T.; Dong, L. J. YouJi HuaXue 1990, 10, 1-7.
- 17. Jeong, L. S.; Nicklaus, M. C.; George, C.; Marquez, V. E. Tetrahedron Lett. 1994, 35, 7569.